Role of the subcellular localization of ALK tyrosine kinase domain in neuronal differentiation of PC12 cells.
نویسندگان
چکیده
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase essentially and transiently expressed in specific areas of the developing central and peripheral nervous systems. We previously demonstrated that a membrane-bound and constitutively active form of the ALK protein tyrosine kinase (PTK) domain induced the neuron-like differentiation of PC12 cells through specific activation of the mitogen-activated protein kinase (MAP kinase) pathway. Its PTK domain had been originally identified in a nucleo-cytosolic and constitutively active transforming protein, NPM-ALK. Downstream targets involved in oncogenic proliferation and survival processes have been proposed to include phospholipase Cgamma (PLCgamma), phosphoinositide 3-kinase (PI 3-kinase)/AKT, STAT 3/5 and Src. We therefore postulated that activation of specific signaling pathways leading to differentiation or proliferation can be differently controlled depending on the subcellular localization of ALK PTK domain. To increase knowledge of its physiological role in the nervous system, we focused in the present study on the influence of its subcellular localization on neuronal differentiation. To achieve this goal, we characterized biological responses and transduction pathways in PC12 cells elicited by various constructs encoding membrane-bound (through transmembrane or myristyl sequences) or cytosolic ALK-derived proteins. In order to control the activation of their PTK domain, we used an inducible dimerization system. Here, we demonstrate that membrane attachment of the ALK PTK domain, in PC12 cells, is crucial for initiation of neurite outgrowth and proliferation arrest through a decrease of DNA synthesis. Furthermore, we show that this differentiation process relies on specific and sustained activation of ERK 1/2 proteins. By contrast, activation of the cytosolic form of this domain fails to induce MAP kinase activation and cell differentiation but promotes a PI 3-kinase/AKT-dependent PC12 cell proliferation. These data indicate that subcellular localization of the ALK PTK domain was a determinant for the control and specificity of downstream transduction cascades and was crucial for deciding the fate to which the neuronal cell will be committed.
منابع مشابه
Activation of anaplastic lymphoma kinase receptor tyrosine kinase induces neuronal differentiation through the mitogen-activated protein kinase pathway.
Anaplastic lymphoma kinase (ALK) is a novel neuronal orphan receptor tyrosine kinase that is essentially and transiently expressed in specific regions of the central and peripheral nervous systems, suggesting a role in its normal development and function. To determine whether ALK could play a role in neuronal differentiation, we established a model system that allowed us to mimic the normal act...
متن کاملSelenium nanoparticles inclusion into chitosan hydrogels act as a chemical inducer for differentiation of PC12 cells into neuronal cells
Background and Objective: Biomaterials and nanomaterials have generated a great opportunity in regenerative medicine. Neurological disorders can result in permanent and severe derangement in motor and sensory functions. This study was conducted to examine the effects of selenium nanoparticles (Se NPs) as a chemical inducer for differentiation of PC12 cells into sympathetic-like neurons characte...
متن کاملFMS-like Tyrosine Kinase-3 Mutation in a Child with Standard-risk ALL and Normal Karyotype
FMS-like tyrosine kinase-3 is a receptor tyrosine kinase expressed by immature hematopoietic cells and is important for the normal development of stem cells and the immune system. Mutations of FMS-like tyrosine kinase-3 have been detected in about 30% of patients with acute myelogenous leukemia and a small number of patients with acute lymphoblastic leukemia. The FMS-like tyrosine kinase-3 muta...
متن کاملALK receptor tyrosine kinase promotes cell growth and neurite outgrowth.
Anaplastic lymphoma kinase (ALK) is a receptor-type protein tyrosine kinase that is expressed preferentially in neurons of the central and peripheral nervous systems at late embryonic stages. To elucidate the role of ALK in neurons, we developed an agonist monoclonal antibody (mAb) against the extracellular domain of ALK. Here we show that mAb16-39 elicits tyrosine phosphorylation of endogenous...
متن کاملExpression of Anaplastic Lymphoma Kinase Protein in Human Breast Cancer
Background & Objectives: Anaplastic lymphoma Kinase (ALK) is a receptor tyrosine kinase involved in the genesis of several human cancers. ALK was initially identified because of its involvement in anaplastic large cell lymphoma (ALCL). ALK is believed to foster tumorigenesis following activation by autocrine and/or paracrine growth loops. Studies reveal that the presence of anti-ALK antibodies ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 118 Pt 24 شماره
صفحات -
تاریخ انتشار 2005